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Balance equations are derived from Enskog’s kinetic equation for a two-dimensional
system of hard disks using Grad’s moment expansion method. This set of equations
constitute an extended hydrodynamics for moderately dense bi-dimensional fluids. The
set of independent hydrodynamic fields in the present formulations are: density, velocity,
temperature and also—following Grad’s original idea—the symmetric and traceless
pressure tensor pi j and the heat flux vector qk . An approximation scheme similar in
spirit to one made by Grad in his original work is made. Once the hydrodynamics is
derived it is used to discuss the nature of a simple one-dimensional heat conduction
problem. It is shown that, not too far from equilibrium, the nonequilibrium pressure in
this case only depends on the density, temperature and heat flux vector.

KEY WORDS: kinetic theory, gases, Enskog’s equation, moment expansion

PACS: 51.10.+y, 05.20.Jj, 44.10.+i, 05.70.Ln

1. INTRODUCTION

In 1921 Enskog introduced a kinetic theory for dense gases (1) which is known to
yield a very good approximate description of the behavior of gases, particularly
transport phenomena, as in Ref. 2 and references therein. Today Enskog’s original
theory is known as the standard Enskog theory (SET)(2,4) because after the pioneer
work of van Beijeren and Ernst (5) there are several new versions of Enskog’s theory
collectively called revised Enskog’s theory (RET). (6) Among the latter there are
versions that have been extended to describe condensed matter. (7) To Navier-
Stokes level both SET and RET lead to the same results, (5,8) whether or not an
external force is present. For SET and RET, using approximations in Sec. 5, the
same hydrodynamic equations are obtained.
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Once a kinetic equation is given it is possible to derive hydrodynamic like
equations, thus reducing the degrees of freedom from those of the velocity distri-
bution function f (r, c, t) to the degrees of freedom of a finite set of hydrodynamic
fields. Of these methods we mention the Chapman–Enskog method(3,9,10) and
Grad’s moment expansion method. (11,12) The first is widely used and illustrated
even in textbooks. Much less attention has been paid to Grad’s method which
is our central tool in this paper. Both Chapman–Enskog and Grad’s methods are
truncated expansions.

Perhaps the first effort to obtaining hydrodynamic equations (balance equa-
tions) from Enskog’s theory using Grad’s moment expansion methods was by
Schmidt et al. (13) in 1981. They did not start from the local distribution func-
tion but from a Maxwell distribution function as kernel, totally linearized their
hydrodynamic equations, that is, completely eliminated the products of differ-
ences between the hydrodynamic variables associated to the equilibrium state and
the inhomogeneous nonequilibrium state. From this they obtained approximate
hydrodynamic equations such that the conservation laws for mass, moment and
energy are not exactly satisfied. They also obtained expressions for the transport
coefficients (viscosity and heat conductivity) and the thermal pressure.

In 1988, Kremer and Rosa(14) obtained hydrodynamic equations from the
local equilibrium distribution function as kernel linearizing the collision integral
in Enskog’s equation. In particular they introduced an approximation which com-
pletely eliminates the second order terms of the collision integral. They derived
sound dispersion relations for monoatomic gases using normal mode analysis.

In 1991, Marques and Kremer (15) developed Kremer and Rosa’ work(14) and
obtained linearized hydrodynamic equations involving the second order terms of
the collision integral. Consequently their equations are less approximate than in
Ref. 13 although in the bi-dimensional case, eliminating the products between the
hydrodynamic variables which are deviations from the value at equilibrium, their
equations coincide with our results. Furthermore they obtained linearized Burnett
equations for monoatomic gases where they eliminate third order terms from the
collision integral.

In 1996, Rangel-Huerta and Velasco(16) obtained the hydrodynamic equations
from the local equilibrium distribution function as kernel with partial linearization
of the collision integral in Enskog’s equation. They also eliminated collision
terms as in Ref. 14 and obtained the extended equations as in Ref. 15: in the
second cited paper of Ref. 16 Grad’s distribution function without approximation
is used, whereas in Ref. 15 the authors use a Maxwellian distribution function
to get the second order collision term. Therefore, the terms of the second order
spatial derivative of the pressure tensor and heat flow vector are added in the
balance equations for the pressure tensor and heat flow vector. They derived
generalized transport coefficients with the methods used widely in generalized
hydrodynamics. (17) In 1997, Ref. 18 develops the extension of Grad’s moment
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method for the RET, and in 1998, obtained hydrodynamic equations which are
applicable only to a system undergoing uniform shear flow. (19) In 2001, Rangel-
Huerta and Velasco(20) eliminated the second order terms of the spatial derivative
of the pressure tensor and heat flow vector from the balance equations for the
pressure tensor and heat flow vector of the former results (16) and obtained a
similar but extended hydrodynamic equations similar to Ref. 15 nevertheless, get
better agreement with molecular dynamic simulations. (21)

The present article provides extended hydrodynamic equations derived from
Enskog’s equation using Grad’s moment expansion method in the bi-dimensional
case. They are more complete than a linear approximation but still they are the
result of an approximation scheme that we later explain. As far as we know this is
the first time that Grad’s method used to obtain extended hydrodynmaic equations
from Enskog’s equation has been published beyond the a linear approximation in
two or three dimensions.

In addition, we will apply this hydrodynamic equations to a one dimen-
sional steady state heat conduction case. There are many studies on this theme:
for example, the experimental investigation in Ref. 22 and the theoretical one
in Refs. 23, 24 Gross and Ziering(25) investigated it starting from Boltzmann’s
equation with Grad’s moment method. To our knowledge, no one has investigated
it starting from Enskog’s equation using Grad’s moment method. Recently Kim
and Hayakawa(26) investigated it starting from Boltzmann’s equation using the
Chapman–Enskog method for hard core particles, Maxwellian ones and BGK’s
ones (27) and Hayakawa et al. (28) investigated it for hard disks using molecular-
dynamic simulations. Furthermore, they tried a test of the nonequilibrium steady
state thermodynamics (SST) proposed by Sasa and Tasaki (29) and criticized it.
The state defined in Ref. 29 for a gas in a nonequilibrium steady state is a one-
dimensional heat conductive configuration in contact with an equilibrium state
through a special porous wall (called the perfect µ wall. (29)) There is a nontriv-
ial pressure difference between the equilibrium and nonequilibrium state parallel
to the direction of the heat flow. We have considered this phenomenon with our
hydrodynamic equations in Ref. 30.

Parenthetically we mention that it is meaningful to check, using kinetic theory,
whether one of the main assumptions of SST(29)—the nonequilibrium steady state
pressure—is a functional of the density, temperature and heat flow. We find that,
in fact, it is correct provided the system is not too far from equilibrium. This is
consistent with the range predicted in Ref. 29 for this nontrivial pressure difference
to appear. Note that one of the useful merits of Grad’s moment method is that one
can easily find relations between nonequilibrium thermodynamic variables.

The organization of this paper is as follows. In Sec. 2, Grad’s moment ex-
pansion method is introduced. Section 3 is about Enskog’s equation. In Sec. 4 we
formulate the macroscopic balance equations. In Sec. 5 the simplified collision
contribution used in this paper is constructed showing that, for the approximations
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introduced here, there is no difference between the macroscopic balance equations
obtained by RET and SET. In Sec. 6 the hydrodynamic equations that our pro-
cedure yields are presented and the collision frequency coefficient χ used in this
paper are introduced. In Sec. 7 we apply our hydrodynamic equations to a simple
heat conduction case in which there is a steady heat current between two parallel
plates at slightly different temperatures. The closed expression of the pressure
only depends on the hydrodynamic fields: density, temperature and heat vector. A
final remarks on this example are given. In Sec. 8 we summarize our results.

2. THE VELOCITY DISTRIBUTION FUNCTION AND ITS EXPANSION

To define dimensionless variables A from the physical variables Ā we choose
the mass of the particles to be the unit of mass, and the temperature is measured
in energy units so that Boltzmann’s constant is 1. Further, we take a reference
distance L and a reference temperature T0 so that the dimensionless coordinates
x , velocities c and time are such that

x = x̄/L , c = c̄/
√

T0, t =
√

T0

L
t̄ .

Assuming that the system is in a rectangular box of size Lx × L y the hydrodynamic
fields can be rescaled defining dimensionless fields as follows,

n = Lx L y

N
n̄ number density,

v = 1√
T0

v̄ hydrodynamic velocity,

T = 1

T0
T̄ temperature,

Pi j = Lx L y

N T0
P̄i j pressure tensor, (1)

q = Lx L y

N T 3/2
0

q̄ energy flux,

F = L

T0
F̄ external force,

The distribution function f̄ is replaced by a dimensionless distribution function
f ,

f = Lx L y T0

N
f̄ .
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In the following sections some auxiliary dimensionless quantities will be
used

αy = Lx

L
,

αy = L y

L
,

ρ0 = N

Lx L y

πσ 2

4
= π Nδ2

4αxαy
, (2)

Kn = 8
√

2

π

�

L
, Knudsen number,

δ = σ

L
= Knρ0

where σ is the disk’s diameter, N is the number of disks and � = πσ

8
√

2ρ0
is the

mean free path at equilibrium. In these units, for example, the free flight time for

Boltzmann’s gases at equilibrium temperature T0 is
√

πKn
8 . L is any macroscopic

distance that we take as relevant depending on the particular problem to be ana-
lyzed. For the purposes of the present paper we will typically assume that L is of
the order of L y .

Following Grad, we make a formal eight moments expansion of the distribu-
tion function(11)

f (r, c, t) = fM�G, (3)

where

fM = n(r, t)

[
1

2πT (r, t)

]
exp

[
− C(r, t)2

2T (r, t)

]
. (4)

In Grad’s method the factor �G is written as an expansion in Hermite poly-
nomials of the peculiar velocity C ≡ c − v(r, t),

�G =
∞∑

n=0

a(n)
i (r, t)H (n)

i (C), (5)

where c is the molecular velocity and where H (n)
i is a tensor with n subscripts,

i = (i1 . . . in) as well a polynomial of n-th degree in the components of C. Also the
coefficients a(n)

i are tensors of order n. The eight moments expansion corresponds
to truncating the expansion in Eq. (5) up to n = 3. In dimension 3 this leads
be the well known 13 moments methods used by Grad himself working upong
Boltzmann’s equation. It is widely used.

Grad’s method consists of first replacing f given by Eq. (3) but with the
truncated expresion for �G , in the kinetic equation (Boltzmann’s or Enskog’s), and
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then projecting the kinetic equation to the different Hermite polynomials used in
the tructated expansion. This procedure—deviced by Grad—leads to obtaining as
many balance equations as polynomials were included in the truncated expansion
for �G .

The Hermite polynomials satisfy the orthogonality relations

1

2πT

∫ ∞

−∞
H m

a H n
b exp

[
− C2

2T

]
dC = n!δmnδab, (6)

and they are, for example,

H 0 = 1, (7)

H 1
i = Ci√

T
, (8)

H 2
i j = Ci C j

T
− δi j , (9)

H 3
i jk = Ci C j Ck

T
3
2

− (Ciδ jk + C jδki + Ckδi j )√
T

(10)

where i, j = 1, 2. Instead of using the full set of third order Hermite polynomial
H 3

i jk we use—as Grad did—the corresponding contracted Hermite polynomials

H 3
i defined by

H 3
i = Ci√

T

(
C2

T
− 4

)
. (11)

The coefficients an
i in Eq. (5) can be expressed in terms of the hydrodynamic

fields n(r, t), T (r, t), and the flux vectors associated with the velocity and the
energy, called the kinetic part of pressure tensor and the energy flux: Pk

i j (r, t),

qk
i (r, t) according to the following sum rules,

∫
f dc = n(r, t) , (12)

∫
C(r, t) f dc = 0 , (13)

∫
1

2
C(r, t)2 f dc = n(r, t)T (r, t) , (14)

∫
Ci (r, t)C j (r, t) f dc = Pk

i j , (15)

∫
1

2
C(r, t)C2(r, t) f dc = qk(r, t), (16)
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where pi j is the traceless part of Pk
i j ,

Pk
i j = n(r, t)T (r, t)δi j + pi j (r, t) .

The factor �G for the eight moments method turns out to be

�G = 1 + 1

2n T 2
pi, j Ci C j + 1

n T 2

[
C2

4T
− 1

]
C · qk . (17)

We refer to the “kinetic part” of the fluxes to stress that kinetic theory, in
principle, includes contributions to the fluxes associated to the interaction between
the particles.

3. ENSKOG’S EQUATION

Enskog’s equation is
[

∂

∂t
+ c1 · ∇1 + F · ∇c1

]
f (r1, c1, t)

= 4

πKn

∫
[χ (r1, r1 + δk | n) f (r1, c′

1, t) f (r1 + δk, c′
2, t)

−χ (r1, r1 − δk | n) f (r1, c1, t) f (r1 − δk, c2, t)](g · k) θk dk dc2 (18)

where k is the unit vector from the disk centered at r1 + δk to the disk with
center at r1 upon collision and is is integrated over all the unit vectors while
g = c2 − c1 and θk is the Heaviside function θk = θ (g · k) and where the two
velocities of the disks after collision are c′

1 = c1 + (g · k)k and c′
2 = c2 − (g · k)k,

respectively.
The collision frequency χ (r1, r1 ± δk | n) is the pair distribution function of

two hard disks at contact and n is the number density defined by Eq. (12) . This χ

is given by the procedure of statistical mechanics, that is, by the virial expansions
of the pair distribution function and of course its expression depends on whether
one uses SET or RET.

Concretely, with r′ = r + δk,

χ SET (r, r′|n) = 1 + n

(
1

2
(r + r′)

) ∫
V (r|r3) dr3 + 1

2!
n2

(
1

2
(r + r′)

)

×
∫

V (r, r′|r3r4) dr3 dr4 + · · ·

= χc + δ

2
k · ∇χc + δ2

8
kk : ∇∇χc + · · · (19)
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χ RET (r, r′|n) = 1 +
∫

n(r3)V (r, r′|r3) dr3 + 1

2!

×
∫

n(r3)n(r4)V (r, r′|r3r4) dr3dr4 + · · ·

= χc + δ

2

∂χc

∂n
(k · ∇n) + δ2

8

∂2χc

∂n2
(k · ∇n)(k · ∇n) + · · · (20)

where

χc = 1 + n(r)
∫

V (r, r′|r3) dr3 + n2(r)

2!

∫
V (r, r′|r3r4)dr3dr4 + · · · (21)

and where the usual Hushimi V-function is introduced. (8,31)

Expanding the right hand side in powers of δ up to second order following
the Appendix of Ref. 8,

rhsSET = J SET
0 + δ J SET

1 + δ2 J SET
2 , (22)

rhsSET = J RET
0 + δ J RET

1 + δ2 J RET
2 , (23)

where

J SET
0 = J RET

0 = J0,

J SET
1 = J RET

1 = J11 + J12,

J SET
2 = J21 + J22 + J23,

J RET
2 = J SET

2 + J24, (24)

and

J0 = 4

πKn
χc

∫
( f ′

1 f ′
2 − f1 f2)(g · k)θkdkdc2,

J11 = 4

πKn
χc

∫
k · ( f ′

1∇ f ′
2 + f1∇ f2)(g · k)θkdkdc2,

J12 = 2

πKn

∫
(k · ∇χc)( f ′

1 f ′
2 + f1 f2)(g · k)θkdkdc2,

J21 = 2

πKn
χc

∫
kk : ( f ′

1∇∇ f ′
2 − f1∇∇ f2)(g · k)θkdkdc2, (25)

J22 = 2

πKn

∫
(k · ∇χc)k( f ′

1∇ f ′
2 − f1∇ f2)(g · k)θkdkdc2,

J23 = 1

2πKn

∫
(kk : ∇∇χc)( f ′

1 f ′
2 − f1 f2)(g · k)θkdkdc2,

J24 = − 1

2πKn

∂χc

∂n

∫
(kk : ∇∇n(r, t))( f ′

1 f ′
2 − f1 f2)(g · k)θkdkdc2
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where the following abbreviations: f1 = f (r1, c1, t), f ′
1 = f (r1, c′

1, t), f2 =
f (r1, c2, t) and f ′

2 = f (r1, c′
2, t) are introduced. Here χc is concretely given by

the virial expansions, (8) but, as seen below, we do not use such an expression.

4. THE BALANCE EQUATIONS

The macroscopic balance equations are derived following Grad’s prescription,
successively projecting the kinetic equation to the different Hermite polynomials
being used.

If Enskog’s equation is multiplied by a function φ1 of the peculiar velocity
C1 = c1 − v and integrating over c1 yields

∫
φ1

∂

∂t
f1dc1 +

∫
φ1c1 · ∇ f1dc1 +

∫
φ1F · ∇c1 f1dc1

= I

= I SET
0 + δ I SET

1 + δ2 I SET
2 (for SET)

= I RET
0 + δ I RET

1 + δ2 I RET
2 (for RET) (26)

where

Ii =
∫

φ1 Ji dc1 (i = 0, 1, 2). (27)

The balance equations of our interest, in particular the basic conservation equations
(mass, momentum and energy), are obtained multiplying Enskog’s equation by
φ = 1, c1,

1
2 C2

1 . In such cases φ1 + φ2 = φ′
1 + φ′

2 is true (prime indicates post
collision velocities) so that

I SET
0 = I RET

0 = 0, (28)

and

I SET
1 = I RET

1 = 2

πKn
∇ ·

∫
χc(φ1 − φ′

1) f1 f2(g · k)θkkdkdc1dc2, (29)

I SET
2 = I RET

2 = 1

πKn
∇ ·

∫
χc(φ1 − φ′

1)

×
[

k · f1 f2∇ log
f1

f2

]
(g · k)θkkdkdc1dc2. (30)

In the case when the external force is uniform the general conservation equation
may be written as

∂

∂t

∫
φ1 f1dc1 + ∇ ·

∫
φ1c1 f1dc1 − F ·

∫
φ1∇c1 f1dc1 = −∇ · � (31)
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where I = −∇ · �.
In the case when φ1 is not associated to a microscopic conservation law the

results are

I SET
0 = I RET

0 = 4χc

πKn

∫
(φ′

1 − φ1) f1 f2(g · k)θkdkdc1dc2, (32)

I SET
1 = I RET

1 = 4

πKn

∫
(φ1 − φ′

1)

[
χck · f1∇ f2 + 1

2
(k · ∇rχc) f1 f2

]

× (g · k)θkdkdc1dc2, (33)

I SET
2 = 2

πKn

∫
(φ′

1 − φ1)

[
(k · ∇χc)k( f1∇ f2) + χckk : f1∇∇ f2

+ 1

4
(kk : ∇∇χc) f1 f2

]
(g · k)θkdkdc1dc2, (34)

I RET
2 = 2

πKn

∫
(φ′

1 − φ1)

[
(k · ∇χc)k( f1∇ f2) + χckk : f1∇∇ f2

+ 1

4

∂2χc

∂n2
(k∇n(r, t))(k∇n(r, t)) f1 f2

]
(g · k)θkdkdc1dc2. (35)

5. SIMPLIFIED COLLISION CONTRIBUTION

The collisional term in both Boltzmann’s and Enskog’s equations is quadratic
in the distribution function, hence there are integrals which involve products
H � H m which have to be projected to different H ns. Even in the case of the 13
moments method for Boltzmann’s equation with the contraction as in Eq. (11),
Grad proposed to consider only those contributions such that � + m = n even
though there is no clear mathematical criterion to make such simplification except
for Maxwellian molecules because this case the collision term is integrable and
such quadratic terms do not appear.

Nevertheless, Grad was able to prove that very little error is made even in
the case of non-Maxwellian molecules by restricting the contributions to � + m =
n. (11,12) Although we do not have such a prove in the case of Ebskog’s equation
we follow the same prescription.

In our present case, to be able to obtain general hydrodynamic equations—
following the present procedure—which are not overwhelmingly complex it is
necessary to make some further simplifications.

Since �G is a correcting factor we may consider that its contribution can
be regarded as 1 plus something small, schematically �G = 1 + ε. Since the
collision integral is quadratic in the distribution function, the integrand has a
product �G1�G2 = 1 + ε1 + ε2 + ε1ε2. Our simplificatory strategy will be first
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that: to evaluate J0 we keep all the contributions; to evaluate J1 we keep the
“order ε” terms, namely, �G1�G2 ≈ �G1 + �G2 − 1; to evaluate J2 we take
�G1�G2 ≈ 1.

Therefore, in Eq. (33), the following relations are required,

f1 f2 = fM1 fM2(�G1 + �G2 − 1),

f1∇ f2 = fM1(∇ fM2)(�G1 + �G2 − 1) + fM1 fM2∇�G2

and in Eqs. (34) and (35) we use

f1 f2 = fM1 fM2. (36)

For hard disks, fM1 fM2 = f ′
M1 f ′

M2. Hence, J24 in Eq. (25) vanishes, and from
Eq. (24), the SET’s collision term coincides with the RET’s. Additionally, also J23

in Eq. (25) vanishes for the same reason. Consequently, Eq. (35) is reduced (34)
and

I SET
2 = I RET

2 = 2

πKn

∫
(φ′

1 − φ1) [(k · ∇χc)k( fM1∇ fM2)

+χckk : fM1∇∇ fM2] (g · k)θkdkdc1dc2. (37)

After introducing the approximations mentioned above, we directly calculate, us-
ing MAPLE routines, the collisional term in Enskog’s equation for all contributions
originated in the products Hl H m .

6. THE HYDRODYNAMIC EQUATIONS

The central result of the present paper are the hydrodynamic equations that
we have derived from Enskog’s equation according to what has been explained in
the previous sections.

To the best of our knowledge, these hydrodynamic equations are published
for the first time. For the two dimensional case we have not encountered any
paper at all while for three dimensional case the published literature refers to
linearized versions. For the sake of clarity the balance equations for conserved
quantities (mass, momentum and energy) are written in terms of the hydrodynamic
quantities: density, hydrodynamic velocity, temperature, pressure tensor and heat
flux; whereas the balance equations associated to the pressure tensor and the heat
flux are written in terms of the symmetric pressure tensor and heat flux vector.
This is what is also done in almost all well-known articles for the extremely dilute
system.

We use the following notation as Euler’s (material) derivative: D
Dt = ∂

∂t + v ·
∂
∂r . Summation is implied with repeated tensorial indeces.
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The final extended hydrodynamic equations are the following:

Dn

Dt
= −n∇ · v (38)

n
Dv

Dt
= nF − ∇ · P (39)

n
DT

Dt
= −(∇ · Q + P : ∇v) (40)

D

Dt
pi j + ∂vl

∂xl
pi j + pil

∂vl

∂xi
+ p jl

∂vi

∂xl
− plm

∂vm

∂xl
δi j

+ 1

2

[
∂

∂xi
qk

j + ∂

∂x j
qk

i − ∂

∂xl
qk

l δi j

]
+ nT Si j = Ip (41)

D

Dt
qk

i + 3

2

[
∂vi

∂xl
qk

l + ∂vl

∂xl
qk

i

]
+ 1

2

∂vl

∂xi
qk

l

+ T
∂

∂xl
pli + 2

∂T

∂xl
pli − 1

n

∂

∂xm
Pk

ml pli

+ 2nT
∂T

∂xi
= Iq (42)

where the pressure tensor P is given as

P = βpp + Pcol, (43)

with

βp = 1 + δ

Kn
χcn, (44)

Pcol =
[

1 + δ
2

Kn
χcn

]
nT 1 − δ2

√
πKn

χcn2
√

T [S + 2(∇ · v)1] (45)

and the shear tensor S which is defined by

Si j = ∂v j

∂xi
+ ∂vi

∂x j
− ∂vl

∂xl
δi j , (46)

where Q = βqqk + qcol,

βq = 1 + δ
3

2Kn
χcn, qcol = −δ2 2√

πKn
χcn2

√
T ∇T (47)

and where the kinetic contribution to the heat flux vector Q is given by qk following
the definition Eq. (12). Additionally, the remaining terms, which give the colli-
sional contribution to the extended hydrodynamic equations, are given as below.
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Ip is split in the form Ip = I0
p + I1

p + I2
p where

I0
p = − 8√

πKn
χc

√
T

[
npi j + 1

128T 2

[
2qk

i qk
j − qk

l qk
l δi j

]]
, (48)

I1
p = − δ

Kn

[
5

4
χc

[
qk

i

∂n

∂x j
+ qk

j

∂n

∂xi
− qk

l

∂n

∂xl
δi j

]

+ 3

4
χc

[
∂

∂xi
qk

j + ∂

∂x j
qk

i − ∂

∂xl
qk

l δi j

]

+ n

[
qk

i

∂χc

∂x j
+ qk

j

∂χc

∂xi
− qk

l

∂χc

∂xl
δi j

]
− χc

∂vl

∂xl
pi j + 5

4
χcn2T Si j

]
(49)

and the δ2 contribution is

I2
p = δ2

Kn

1√
π

[
2χcn

√
T

[
∂n

∂xi

∂T

∂x j
+ ∂n

∂x j

∂T

∂xi
− ∂n

∂xl

∂T

∂xl
δi j

]

+ 1

2
χc

n2

√
T

[
2
∂T

∂xi

∂T

∂x j
− ∂n

∂xl

∂T

∂xl
δi j

]

+χcn2
√

T

[
2

∂2T

∂xi∂x j
− ∂2

∂xl∂xl
T

]

+ n2
√

T

[
∂T

∂xi

∂χc

∂x j
+ ∂T

∂x j

∂χc

∂xi
− ∂T

∂xl

∂χc

∂xl
δi j

]

+ 2χcn2
√

T
∂vl

∂xl
Si j

]
, (50)

Iq is split Iq = I0
q + I1

q + I2
q and

I0
q = − χc√

πT Kn

[
4nT qk

i + pilq
k
l

]
, (51)

I1
q = δ

Kn [(1)δ + (2)δ + (3)δ]

(1)δ = −1

2

[
7χcnT

∂

∂xl
pli + 7T χc

∂n

∂xl
pli

+ 7nT
∂χc

∂xl
pli + 4χc

∂T

∂xl
pli

]
,
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(2)δ = −
[

8χcnT 2 ∂n

∂xi
+ 7χcn2T

∂T

∂xi
+ 4n2T 2 ∂χc

∂xi

]
,

(3)δ = −1

2
χcn

[
2Sil − ∂vl

∂xl
δi j

]
qk

l (52)

and where

I2
q = δ2

8Kn
√

π
n
√

T

[
35χcn2 ∂T

∂xl
Sli + 18nT

∂χc

∂xl
Sli

+36χcT
∂n

∂xl
Sli + 18χcnT

∂2

∂xl∂xl
vi + 36χcnT

∂

∂xi

∂vl

∂xl

]
. (53)

The above equations have the well known form which comes from very
general arguments from continuous fluid matter and where established in the XIX
century. The detail structure of some of the terms comes from kinetic theory.

Of course it is interesting to compare our results to the ones obtained by
means of the Chapman–Enskog method. For example, Kim and Hayakawa(26)

have derived the explicit velocity distribution function of Bolzmann’s equation us-
ing Chapman–Enskog expansions to Burnett’s level, although restricted to steady
states. Also the linearized Burnett equations in the SET (in the first Enskog approx-
imation) have been used by Alves and Kremer (32) to study light scattering from
density fluctuations. However it would be difficult to compare our approximations
with those from Chapman–Enskog’s method. They are quite different methods
indeed.

Furthermore, in order to calculate any physical quantity, we first determine
χc. The static pressure p is given as p = 1

2 TrP.
The static pressure p is given as p = 1

2 TrP. This automatically yields that
the equation of state is given by Eqs. (43) and (44). Then, the relation between χc

and the static pressure p is given by

χc = p/nT − 1

2ρ0
(54)

where the relation: δ = ρ0Kn is used. In general, χc is related to the pair distribution
function. (4) In the case without external force, the equation of state at equilibrium
is very well approximated using Henderson’s expression(33)

p

nT
= 1 + ρ2

0
8

(1 − ρ0)2
, (55)

which is what we use.
In the case with F �= 0, SET does not yield the correct single-particle equi-

librium distribution function, whereas RET do. (34)
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7. HEAT CONDUCTION BETWEEN PARALLEL PLATES UNDER

A STEADY STATE CONDITION

7.1. Reduced Hydrodynamics

The above hydrodynamics should in principle allow us to study a wide variety
of dynamic problems involving dense gases. In this section we look at a quite simple
situation in this wide context. It is the case of a one dimensional heat conduction
case between two parallel plates.

The system consists of gas between two infinite parallel plates 1 and 2 sepa-
rated by a distance L . The plates have fixed temperatures T1 and T2 respectively.
A schematic representation in Fig. 1 shows the Y axis defined perpendicular to
the plates while the X axis is placed on plate 1.

In general, under circumstances with a gradient of temperature perpendicular
to the walls, there is a difference between the temperature of the gas by the plate
and the temperature of the plate itself. This is a well-known effect called thermal
slip. For simplicity’s sake we neglect such difference.

For this simple system the extended hydrodynamic equations drastically sim-
plify. The basic concrete equations solved here are the following:

Pyy(y) ≡ Pyy = const., Qy(y) ≡ Qy = const.,

Pxy(y = pxy(y) = 0,

Pyy = −
[

1 + δ

Kn
χcn(y)

]
pxx (y) +

[
1 + 2

δ

Kn
χcn(y)

]
n (y) T (y) , (56)

Qy =
[

1 + 3

2
χcn(y)

δ

Kn

]
qk

y (y) − δ2 2√
πKn

χcn(y)2
√

T (y)
dT (y)

dy
, (57)

L

Y

X

T

T

2

1

Fig. 1. Configuration of the simple heat conduction system as described in the text.
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−1

2

dqk
y (y)

dy
= − 8√

πKn
χc

√
T (y)

[

n (y) pxx (y) − qk
y (y)2

128T (y)2

]

+ δ

4Kn
χc

[

5qk
y (y)

dn(y)

dy
+ 3n(y)

dqk
y (y)

dy

]

− δ2

√
πKn

χcn(y)
√

T (y)

[

2
dn(y)

dy

dT (y)

dy
+ 1

2

n(y)

T (y)

(
dn(y)

dy

)2

+ n(y)
d2T (y)

dy

]
, (58)

−T (y)
dpxx (y)

dy
− 2

dpxx (y)

dy

dT (y)

dy
+ 2n(y)T (y)

dpxx (y)

dY

+T (y)

n(y)
pxx (y)

dT (y)

dy
− pxx (y)

n(y)

dpxx (y)

dy
= − 4

√
πT (y)Kn

× [n(y)T (y) − pxx (y)] qk
y (y) + δ

Kn
χc

×
[

7

2
n(y)T (y)

dpxx (y)

dy
+ 7

2
T (Y ) pxx (y)

dn(y)

dY
+ 2pxx (Y )

dT (y)

dy

− 8n(y)T (y)2 dn(y)

dy
− 7n (Y )2 T (y)

dT (y)

dy

]
. (59)

7.2. Functional Expression of the Pressure

All the results we describe in what follows were obtained using perturbation
methods choosing T2 > T1 and using ε = (T2 − T1)/T1 as perturbation parameter.
We solve the system of equations up to ε6 and try to express the nonequilibrium
pressure Pyy in terms of the density, temperature and the heat flux Qy . Note
that here Pyy is constant. We manage to do this up to third order in ε, which
corresponds to situations not very far from equilibrium. The functional expression
for the nonequilibrium pressure Pyy turns out to be

Pyy[n(y), T (y), Qy] = n(y)T (y)

[
1 + 2χc

δ

Kn
n(y)

]

×
[

1 + λp

Q2
y

n(y)2T (y)3
�[n(y), T (y)]

]

(60)
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where λp is the following constant

λp = − 1

128
+ 7

16
χc

δ

Kn
− 1

128

[
9

π
+ 2253

]
χ2

c

[
δ

Kn

]2

+
[

7

32
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δ

Kn
− 1

128
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π
+ 2309
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[
δ

Kn
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ε
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− 7

384
+ 7πKn2

16384χ2
c
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δ

Kn
− 1

128

[
2356
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+ 3

2π
− 3 + 751πKn2

256χ2
c
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×χ2
c

[
δ

Kn
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7

768
+ 7πKn2

16384χ2
c

]
χc

δ

Kn
− 1

128

[
3 + 359π

256

]
δ2

]
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(61)

and where

�[n(y), T (y)] = 1 + n(y)(1 + 56T (y))χc
δ

Kn

+
[
−32 + 305π

4π
+ 784T (y) + 3(257π − 3)

π
T (y)2

]
. (62)

Substituting δ = 0 in Eq. (56) yields the functional expression for the pressure
Pyy ,

Pyy(n, T, Qy) = n(y)T (y)

[

1 − 1

128

Q2
y

n(y)2T (y)3

]

. (63)

Therefore Eq. (60) is a natural extension of Eq. (63). For hard spheres the ex-
pression which correspond to Eq. (63) was already given in Ref. 11. For hard
disks Eq. (63) is given for the first time but it can be obtained from the appendix
in Ref. 35,2 where a gas of inelastic disks is studied.

7.3. Comment

The steady state thermodynamics (SST) proposed by Sasa and Tasaki (29)

assumes that all nonequilibrium variables and thermodynamic functions can be
expressed in terms of the density, temperature and the steady state fluxes (heat flux
in the case of our example). We found that using Grad’s moment method, (11,12) this

2 These hydrodynamic equations given in this paper are for granular gases. But substituting q = 0 to
these equations, the hydrodynamic equations corresponding to Boltzmann’s gas is given. Actually,
for hard disks it is the first time that the hydrodynamic equations with the method of Grad starting
from Boltzmann equation appear. And from it, in steady state case which is investigated in present
paper, Eq. (63) is given automatically.
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condition is satisfied in the simple heat conductive case for the dilute and dense
gases which obey Boltzmann’s or Enskog’s kinetic equations in the range of the
approximation introduced in Sec. 5 if the system is not too far from equilibrium.
Unfortunately, because kinetic theory defines only the internal energy density,
u(y) ∝ T (y), and this quantity is interpreted as the temperature, it is impossi-
ble, within the framework of kinetic theory alone, to construct nonequilibrium
thermodynamic functions like the Helmholtz energy. Using Boltzmann’s entropy:
s = − f ln f (s is the entropy density), one can define the entropy and a tempera-
ture through (∂s/∂u) = 1/θ where θ is the nonequilibrium temperature (36) in what
is called extended irreversible thermodynamics (EIT). (36) Furthermore one could
define the nonequilibrium Helmholtz free energy and chemical potential, although
we have not seen anyone developing such a formalism. However within kinetic
theory it is not clear which is the difference between the temperature and the inter-
nal energy density. Even if the entropy of the system were given it is not possible
to determine Helmholtz free energy and therefore it is impossible to determine
the chemical potential. Using an assumption of SST(29) that the Maxwell relation
is satisfied by the nonequilibrium thermodynamic variables, then from Eq. (60) a
chemical potential follows without having to determine Helmholtz’s free energy,
although this chemical potential still has an undetermined part which depends on
the heat flux and temperature. In a following article (37) we propose a method to get
the chemical potential partially using the framework of SST. (29) The undetermined
part is measured experimentally. By this method, one can determine the value of
the chemical potential at the interface between equilibrium and nonequilibrium
sides. In other words, we will propose an experimental method for determining the
values of the nonequilibrium variables at the equilibrium-nonequilibrium interface
following the Sasa and Tasaki scheme. Once a chemical potential is given it is
possible to completely express the condition that the perfect µ wall must have(29)

and to discuss about the prediction of (29) beyond any doubt.

8. SUMMARY AND FINAL REMARKS

In this article we have given in detail the hydrodynamic equations for a bi-
dimensional dense gas of hard disks that follow from Enskog’s equation using
Grad’s moment expansion method. Bearing in mind that without a strategy to
simplify the calculations no manageable hydrodynamics can be obtained we have
introduced in Sec. 5 a simplifying scheme that leads to a hydrodynamics which is
more complete than the one that would follow from a linear approximation scheme.
As far as we know this is the first time that Grad’s method used to obtain extended
hydrodynmaic equations from Enskog’s equation has been published beyond the
a linear approximation in two or three dimensions.

We have applied this hydrodynamic equations to discuss a simple but subtle
1D case of heat conduction. The example has the virtue of giving the opportunity
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to discuss the adequacy of the starting point of SST. (29) We have shown that this
simple nonquilibrium steady state system, not too far from equilibrium, behaves
as if nonequilibrium thermodynamic variables could be expressed in a functional
form. Hence, it may be possible to construct a nonequilibrium thermodynamics
without any information of the microscopic dynamics of the system. First, we
have shown this for the dense hard disk system. It is well known that for the
hydrodynamics obtained from Boltzmann’s equation using Grad’s method this is
correct. (11,12)
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